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Abstract-A coupled thermoporoelastic model accounting for compressibility and thermal expan­
sion of constituents, convective heat flow and changing porosity and related properties of a saturated
soil is presented. The model also considers thermodynamically coupled water and heat flow (thermal­
filtration and thermo-osmosis that are analogous to Soret and Dufour effects in solutions). These
coupling effects are reported to be significant in the case of semi-impermeable clay barriers used in
waste repositories. The governing equations derived in terms of displacements, temperature and
pore water pressure are non-linear. A mixed finite element formulation is presented to obtain
numerical solutions. An exact analytical solution for a I-D soil column is presented for a simplified
linear case that includes thermodynamic coupling. Selected numerical solutions for soil columns
and radially symmetric plane strain problems are presented to demonstrate the principle features of
the coupled model and the significance of thermodynamic coupling. (£) 1998 Elsevier Science Ltd.
All rights reserved.

INTRODUCTION

Coupled heat-fluid flow in a saturated deformable porous medium is important in many
branches of engineering. Applications can be found in diverse areas such as geothermal
energy extraction, petroleum engineering, chemical engineering, agricultural engineering,
geotechnical engineering, pavement engineering, hazardous waste management and biome­
chanics. In recent years, this topic has generated considerable attention in the field of
nuclear waste management. For example, the Canadian program for management of
nuclear wastes proposes to store titanium canisters containing spent fuel rods in a deep
geologic vault to be built in the Canadian shield. A sand-bentonite mixture will be placed
as a buffer between the canister and the surrounding rock. Complex thermoporoelastic
fields can be expected in and around the waste repository due to temperature and fluid
pressure gradients created by emplacement of the canisters.

The sand-bentonite buffer that has been proposed for waste disposal will be initially
unsaturated with a degree of saturation Sr = 85%. Coupled heat-moisture flow in an
unsaturated medium is a complicated problem that requires consideration of a multi­
component system consisting of air, vapour, water and soil skeleton. As an initial step in
solving this complicated system, the solution described in the following pages deals only
with fully saturated soils (Sr = 100%). However it takes account of fully coupled thermo­
hydro-mechanical effects and material property changes that result from changes in stresses,
hydraulic gradient, and temperature gradient.

The development of continuum theories for coupled processes of heat-fluid flow and
deformation in saturated media has received considerable attention in the past. The seminal
work of Biot (1941, 1956) described the consolidation ofa soil under isothermal conditions.
Rice and Cleary (1976) recast the Biot's formulation in terms of more easily identifiable
material parameters such as the drained and undrained elastic moduli and Skempton's pore
water pressure parameters, Detournay and Cheng (1993) and Senjuntichai (1994) reviewed
Biot's poroelastic theory and its applications to a variety of quasi-static and dynamic
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problems. Biot (1956, 1977) also extended his isothermal theory to include thermal effects
on consolidation. A rigorous mathematical treatment of the present class of problems can
also be established within the framework of a general theory of mixtures (Adkins, 1963).
Formulation of this type, taking into account various non-linear effects was used by Bowen
(1982) to study deformable, non-isothermal media with multiple pore fluids. Adkin's
formulation has rarely been used in engineering applications because it requires several
constitutive functionals which are difficult to determine experimentally.

Following the basic framework of Biot (1956)., several authors (for example, Schiff­
man, 1971; Derski and Kowalski, 1979; Bear and Corapcioglu, 1981; Palciauskas and
Domenico, 1982; Booker and Savvidou, 1985; McTigue, 1986; Kurashige, 1989; Lewis
and Schrefler, 1987; Smith and Booker, 1993; Jiang and Rajapakse, 1994; Seneviratne et
al., 1994) studied the non-isothermal behaviour offluid-saturated media. These studies differ
only in details. They are based on varying assumptions that may include incompressibility of
constituents, small temperature variations, thermal equilibrium of solid and fluid phases,
linear elastic behaviour of the solid phase, non-convective heat flow, absence of phase
change of fluid, constant material properties, etc. Booker and Savvidou (1985), McTigue
(1986, 1990), Smith and Booker (1993) and Jiang and Rajapakse (1994) presented analytical
solutions for thermoporoelastic models with constant material properties subjected to small
perturbations about an initial state. Finite element solutions for thermoporoelasticity were
presented by Lewis and Schrefler (1987), Britto et al. (1992) and Seneviratne et al. (1994).
All of the above solutions are based on conventional Darcy and Fourier laws for fluid flow
and heat flow, respectively. They therefore neglect the influences of pressure gradient on
heat flow (thermal-filtration which is analogous to Dufour effects in solutions) and the
temperature gradient on fluid flow (thermo-osmosis effect which is analogous to Soret effect
in solutions). Thermo-osmosis and thermal-filtration are coupled processes which arise as
a consequence of thermodynamics of irreversible processes (Fitts, 1962; Onsager, 1931).

Experimental studies (McVay, 1984) indicate that large water pressure and temperature
gradients can be generated in the near-field of a nuclear fuel-waste disposal facility after
the emplacement of waste canisters. These gradients become the primary driving forces of
complex thermoporoelastic fields. Carnahan (1984) showed that the near-field fluid flow in
a semi-impermeable clay barrier due to thermodynamically coupled effects (thermo­
osmosis) can be substantially higher than that due to the direct effect of Darcian flow.
Thermodynamically coupled transport processes in soil-water systems have been studied in
soil sciences and geohydrology for many years (Groenevelt and Bolt, 1969). However these
studies exclusively neglect deformations and stresses of the soil.

In the confined conditions in a large repository, heating will cause increased pore water
pressures (Hueckel and Pellegrini, 1992; Tanaka and Graham, 1996). These can produce
decreased strength in buffer or in clay beds. The outcome could be decreased support for
containers, or initiation of tensile cracking leading to hydraulic fracture.

Clay barriers proposed for waste disposal have very low hydraulic conductivity (1 0-1O~
10- 14 m/s). Under these conditions, thermo-osmosis becomes significant in the presence
of expected temperature gradients. The effect can generally be neglected in traditional
geotechnical engineering applications since the hydraulic conductivities are usually higher
and the temperature gradient is often negligible. However for environmental protection
and public safety reasons, it cannot be neglected in the planning and design of nuclear fuel
waste disposal facilities. Experimental determination of the phenomenological coefficients
associated with thermodynamically coupled transport processes are discussed by Letey and
Kemper (1969) and Srivastava and Avasthi (1975). Existing studies on thermoporoelasticity
neglect thermodynamically coupled heat and fluid flow. McTigue (1986) briefly mentioned
coupled effects but did not include these effects in the analysis. Coussy (1995) recently
discussed the effects of thermodynamically coupled flow within the framework of deform­
able porous media. Although Carnahan (1984) showed the significance of these effects on
semi-impermeable clay barriers, he did not present a thermoporoelastic theory to account
for coupled effects. No solution appears to be available that accounts for ther­
modynamically coupled heat and fluid flow, compressibility and thermal expansion of
constituents, and changing material properties. This forms the basis of the present paper.
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The model can be used for quantifying the significance of coupling between various driving
forces and also in evaluating the applicability of semi-coupled models reported in the
literature. It will also be useful in other applications such as energy resource explorations,
pavement engineering, etc.

This paper presents a thermoporoelastic theory that allows for thermodynamically
coupled fluid and heat flow, changing material properties, compressibility and thermal
expansion of constituents, substantial temperature changes and convective heat flow. The
model can be considered as a significant advancement of the models reported in the
literature. The governing equations of the present model are first established and the
underlying assumptions described. Reduction of the resulting non-linear governing equa­
tions to previous linearized models is shown for certain special cases. An exact analytical
solution is presented for a one-dimensional soil column under the assumption of constant
properties and a small change in temperature. The analytical solution is then used to
demonstrate the significance of coupled effects. A finite element formulation is also
presented. The accuracy of the finite element algorithm is established by comparison with
the analytical solution. Selected non-linear finite element solutions for a one-dimensional
soil column and a long cylindrical cavity are used to demonstrate the principal features of
the coupled fields. Additional parametric studies are presented elsewhere (Zhou, 1998).

GOVERNING EQUAnONS

The present model makes the following assumptions. The porous medium is statistically
isotropic. The fluid and solid phases are in thermal equilibrium. Small displacements and
infinitesimal strains are assumed. The constitutive relationship for the solid skeleton is
linearly elastic. [Solutions and numerical implementation for non-linear constitutive
relations for the solid skeleton are well documented in the literature (Lubliner, 1990;
Zienkiewicz, 1977)]. The medium is fully saturated and the fluid does not undergo a phase
transformation.

Mechanical response
The constitutive relations of an isotropic linear poroelastic medium can be expressed

in terms of the effective stress (J;j (positive for tension), strain Bij and temperature change T

as

(1)

where (J;j = (Jij + ~p[)ij and (Jij denotes total stress (positive for tension), [)ij is Kronecker's
delta, p is pore water pressure (negative for suction), ~(~ 1) is a coefficient which depends
on the compressibility of the constituents [~ = 1- (K' /KJ1, K s is bulk modulus of soil
grains, K' ([ = [2G(1 + v)/3(1- 2v)]} is the drained bulk modulus of the soil medium, v is
the drained Poisson's ratio, C( is coefficient of volumetric expansion of soil medium cae -I)
and G is shear modulus of soil medium.

The equations of equilibrium and the strain-displacement relations can be expressed
as

and

(JijJ+b; = 0

B·· = ~(u,+u)'i 2 I.,) ],l

(2)

(3)

respectively. Where bi and U i (i = x, y, z) denote the net body force and displacement in the
i-direction.
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Equations (l )-(3) can be combined to obtain the following governing equation for
displacement of the medium under a combination ofchanges of applied stresses, pore water
pressures, and temperatures.

2 G ,GV u+ --u... -}:p -K'Y.T+b = 0
I 1_2v},ll ",1 ,1 1 (4)

In the absence of pore water pressure and temperature gradients, eqn (4) reduces to
the classical Navier equations for an ideal elastic solid,

Fluidflow
Consider a saturated soil element of volume V that consists of a volume Vs of soil

grains and a volume Ve of voids, The rate of change of V, Vs and Ve with respect to the
time (t) satisfies the following relationship

1 a V 1 aVe 1 a Vs aev--=--+--=-
V at V at V at at

where ee is the volume strain.
The change of volume of soil grains is given by

and

(5)

(6)

m = <1 o 0 0) (7)

where n, a" and (1' denote the porosity (Vel V), coefficient of volumetric thermal expansion
of soil grains and effective stress vector, respectively, The three terms on the right-hand
side of eqn (6) represent the volume change of soil grains due to changes of temperature,
water pressure, and effective stresses, respectively.

The volume change of voids is given by

(8)

where qw, aw, and f3w denote the water fluxlunit area (m/s), coefficient of thermal expansion
(volume) and bulk modulus of pore water. The first term on the right hand side of eqn (8)
represents the net volume of water flow out of the element, while the remaining two terms
represent the volume change of water caused by changes of temperature and pore water
pressure, respectively.

Substitution of eqns (6) and (8) into eqn (5) results in,

(9)

A quantitative description of thermodynamically coupled transport processes can be
obtained from thermodynamics of irreversible processes (Fitts, 1962; Onsager, 1931). In
this formulation, each flow (in the present case water and heat) in an open system supporting
irreversible processes is written as a linear function of all forces acting within the system.
Therefore water flux is given by the following equation
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where z is the vertical coordinate, k is the coefficient of permeability [m5/(ls)] associated
with Darcy flow; Yw is specific weight of the pore water (N/m3

) and Sw is a phenomenological
coefficient [m2/(s°C)] associated with the influence of thermal gradient on the water flux
(thermo-osmosis). Thermo-osmosis effects may significantly contribute to mass transfer in
semi-impermeable clays (Carnahan, 1984). The gravity potential term in eqn (10) can be
neglected without loss of any generality.

Substitution of eqns (10) and (I) in eqn (9) results in

where

(II)

:J.K
C2 =naw+(I-n)as-T;

s

n I-n
C3 =-+--Pw Ks

(12)

For a medium with incompressible constituents (that is, K" Pw -+ 00), Ct = I,
C2 = naw+(I-n)as and C3 = O. (This condition also applies to cases where the com­
pressibility of the constituents is much less than the compressibility of the soil medium.) If
the thermo-osmosis effect is also neglected (Sw = 0), then the eqn (II) is identical to
the fluid continuity equation presented by Seneviratne et al. (1994). For incompressible
constituents in the absence of temperature effects and Sw = 0, eqns (4) and (II) are equi­
valent to the governing equations used by McNamee and Gibson (1960) for poroelasticity.

Heatflow
lumikis (1966) and Farouki (1986) pointed out that the thermal conductivity of soil

grains is one to five times that of water. Therefore, moisture content (that is, a measure of
porosity) of a saturated soil has a great influence on thermal conductivity (A) which varies
with dry density and porosity. It is also noted that the gravimetric specific heat of soil
grains and water are nearly constant. A coupled thermoporoelastic theory should take these
factors into consideration.

The total heat flux qT is given by

(13)

where

(14)

and As and Aware thermal conductivities of soil grain and water [l/(s' m' 0C)]; Cw is the
gravimetric specific heat of water (J/kg/"C); Pw is the density of water (kg/m3

); A is the
thermal conductivity of soil medium [l/(s' m' 0C)] which is a function ofporosity (therefore,
a function of volume strain, pore water pressure and temperature) and S~ is a phenom­
enological coefficient associated with the contribution of the water pressure gradient to the
heat flux (i.e., the thermal-filtration) arising from thermodynamically coupled transport
processes. It can be shown that S~ = (T+ To)Sw where To is the absolute reference tempera­
ture. The first term in eqn (13) represents the convective heat flux. If the convective heat
transfer is neglected and S~ = 0, then the eqn (13) reduces to the classical Fourier law.

Due to the assumption of thermal equilibrium between the fluid and solid phases, the
heat energy balance equation for the medium can be expressed in terms of a single equation
of the following form
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The first term on the left-hand side of eqn (15) represents the rate of internal heat energy
change per unit volume due to an increase in temperature. The second term represents a
heat sink due to thermal dilatation of the fluid. Biot (1956) neglected this term and it is
included here for completeness. The last term on the left-hand side of eqn (15) represents
a heat sink due to thermal expansion of the medium. For a small variation of temperature,
To+ T ~ To, this term is identical to that given by Biot (1956). The second and third term
on the left-hand side ofeqn (15) represent the thermoporoelastic coupling in the heat energy
balance equation. The contribution due to other mechanical effects such as the conversion
of strain energy into heat energy is neglected in the eqn (15). It is generally recognized that
such contributions can be neglected for the present class of problems.

The conservation of mass of the two phases in the representative element yields,

o(Vsps) = 0
Vat

(16)

(17)

Equations (16) and (17) indicate that density changes of soil grains and water are always
associated with a change of volume or porosity.

The density of water is a function of water pressure and temperature. The thermal
conductivity depends on porosity, which, in turn, depends on stresses, water pressure and
temperature. Assuming that the gravimetric specific heats (Cs , Cw) are constant, the eqn
(15) can be expressed in the following form using eqns (13), (16) and (17)

where C, is the volumetric specific heat of the soil medium (J jm3rC) which is given by

(19)

The equation of state for water is given by Fernandez (1972) as

(20)

where Pwo is the initial density of water.
By retaining the first order terms of the above equation, the gradient of density of

water can be expressed in terms of gradients of water pressure and temperature as,

(21)

Using the eqn (14), assuming that Aw and As are both constant, the gradient of thermal
conductivity of the soil can be expressed by,

(22)

Substitution of eqns (21) and (22) into eqn (18) results in,
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[ (
Sw)J PwoCwkT 2+Cw Pwk+Pwo T -awk+ Pw VTVp+ Pw (Vp)

+ C,,'sw(Pw -awpwo T)(VT)2 +AV2T+V(S~Vp) - (T+ To)rxwPwV(kVp+SwVT) (23)

The first term on the right-hand side represents the effect of porosity change, the
second and third terms represent the linear and non-linear hydraulic effects, the fourth
term represents non-linear temperature effect, the fifth term represents the classical heat
conduction term, the sixth term represents the contribution due to thermal-filtration, and
the last term is associated with convection.

The rate of change of porosity (n) can be expressed from the eqns (5) and (6) as

an ( K')aer [K' JOT I-n ap-= 1-- -+ -rx-(1-n)a -+--­
at K, at Ks S at Ks at

(24)

Equations (4), (11) and (23) with porosity determined from eqn (24) represent a set of
fully coupled non-linear equations governing the thermoporoe1astic response of a saturated
medium. The equations account for thermodynamically coupled heat-mass transfer, com­
pressibility and thermal expansion of constituents, convective heat flow, relatively large
variation oftemperature (To + T #- To) and porosity dependent soil properties (for example,
density, thermal diffusivity, etc.). Depending on the significance ofcoupling between driving
forces, type of soil, and other factors in a given problem, the theory can be reduced to
obtain simpler governing equations.

The following sections simplify the theory to obtain a set of linear governing equations
while retaining the principal coupling terms.

For small changes of porosity, eqn (24) can be approximated by

(25)

where no is the initial porosity.
The gradient of porosity can be expressed as

Substitution of eqn (26) in eqn (23) results in the following energy balance equation

{ (
I-no) [ ( Sw)J} PwoCwkT 2+ (Aw-As ) K:- +Cw Pwk+Pwo T -awk+ Pw VTVp+ pw (Vp)

+ {().w - As) [~~ rx - (1- no)as ] + CwSw(Pw - awpwo T) }(VT)2

+ AV2T + V(S~Vp) - (T+ To)rxwPwV(kVp+ SwVT)

(26)

(27)
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Numerical studies indicate that the third term on the right-hand side of eqn (27) can
be neglected for clayey materials (k/f3w::::; 0). Equations (4), (11) and (27) are a set of
simplified non-linear governing equations for thermoporoelasticity.

Neglecting convective heat transfer, and assuming that (1) volumetric specific heat (C,,)
is constant, (2) thermal conductivity p.) is constant, and (3) the variation of temperature is
relatively small (To+ T::::; To), (4) S~ = (T+ To)Sw ::::; ToSw, eqn (18) can be simplified as:

(28)

Equations (4), (11) and (28) are a set of linear governing equations for ther­
moporoelasticity. If further simplifications are made by neglecting the heat sink associated
with dilatation of fluid and also thermodynamically coupled transport processes (Sw = 0),
eqn (28) reduces to the following heat energy balance equation which is identical to the eqn
(3.4) of Biot (1956).

(29)

Equations (4), (11) and (29) with constant parameters CI> C2 and C3 [eqn (12)] represent
a set of coupled linear governing equations analogous to those reported in literature.

Due to the complexity of the coupling effects in this formulation, numerical methods
such as the finite element method must be used to solve the governing eqns (4), (11), (23)
and (24). To the author's knowledge, solutions have not previously been reported for a
thermoporoelastic model with the coupling described by these equations. It is therefore
important to first derive an analytical solution for a relatively simple linear case in which
the nonlinearities in the coupled model have been relaxed. Such a solution is useful for two
purposes. First it assists in checking the accuracy of the finite element solutions developed
for the more general case with non-linear governing equations. Secondly it provides some
insight into the significance of the coupling effects described by various terms and in the
estimation of the influence of various material parameters without elaborate computational
work.

ANALYTICAL SOLUTION

This section derives an analytical solution for a laterally confined one-dimensional
column of soil. The top end of the column is fully permeable and subjected to a compressive
stress (J'o and a constant temperature increase T!. The fully permeable bottom end is fixed
and kept at To. All material parameters are assumed to be constant, and convective heat­
transfer is neglected. Temperature increase is assumed to be relatively small.

From eqns (4), (11) and (28) the governing equations for the simplified 1-0 problem
can be expressed in terms of the basic unknowns c(,(x, t), p(x, t), and T(x, t)

1- v 82 82 82

--2G-cv -<:;-p-Krx-T= 0 (30)
I - 2v 8x2 DX2 ox2

where Cv = (DUx/aX) and Ux is the displacement in the x-direction.
The boundary conditions can be expressed as
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0",,(0,1)= -0"0; p(O,I) =0; T(O,t) = T,; ux(l,t) =0; p(l,t) =0; T(l,t)=O

(33)

and the initial conditions are,

O"xxCX,O) = 0; p(X, 0) = 0; T(x, 0) = ° (34)

The details of the solution of eqns (30)-(32) subject to the above boundary and initial
conditions are presented in the Appendix A. The following time-domain solutions are
obtained for pore pressure (p), temperature (T) and the displacement (u,)

T I {f [ r [(2m+2)I-x]y, r [2ml+x]YL
p = - L, enc -erIC

h, (yi -I'D m~O 2J{ 2.ji

r [(2m+2)I-x]yz r [2ml+X]Yz]}
- enc r; + erIC r;

2~ t 2~ t

0"0 { [(l-X)'h co [(2ml+X)"h
+ z z (h 3 -hoh,yD erfc r; + L(-l)m erfc r;

h,(Yl-YZ) 2~t m~O 2~t

r [(2m + l)l+x]Yl [(2m+2)I-x]y, [(2m+3)I-X]Yl]]
-erIC r; -erfc r; +erfc r;

2~ 1 2~ t 2~ t

[
(l-X)YZ co [(2ml+X)Yz

- (h 3 - hoh l I'D erfc r; + L (_l)m erfc r;
2~ t m=O 2~ t

r [(2m+ l)l+xlYz [(2m+2)I-x]yz r [(2m+3)I-X]Y2]]} h
-erIC r; -erfc r; +eriC r; - 00"0

2~ t 2~ t 2~ t

(35)

T T, f {(h 2 h) [ r [(2m+2)I-x]YI r [2ml+X]Y,]
= - L, ,1'1 + 2 erIC r; -erIC r;

h,(yi-yDm~o 2~t 2~1

-(h ,2 h) [ r [(2m+2)I-x]Y2 _ .. [2ml+X]Y2]}
I h + 2 erIC r. efJC r.

2~t 2~t

+ 0"0 {(h 3 -hoh,yD(h,yi +hJ [erfC (l-5Y' + f (_l)m [erfC (2ml:;)Y,
hI (yi -yD 2 t m~O 2 t

[(2m+ l)l+x]Yl ..r [(2m+2)I-x]YI r [(2m+3)I-X]Yl]]
-erfc r. -ellC r. + erIC r.

2~ t 2~ t 2~ t

o 2 [(l-X)Y2 co [(2ml+X)Y2
-(h3 -hoh,y])(h'Y2+h2) erfc r. + L (_l)m erfc r.

2~ t m~O 2~ t

[(2m + 1)I+x]Y2 ..r [(2m+2)I-x]Y2 fi [(2m+3)I-X]Y2]]}
-erfc r. -ellC r. +erc r.

2~ t 2~ t 2~ t

-(hoh2+h3)0"0 (36)

F, £2
- - [4>«2ml+x)YI )-4>«2m+ l)ly,)] + - [4><[(2m+2)I-x]Y2)-4>«2m+ 1)IY2)]

Yl Y2
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2 £2 }- (h 3 -hoh l '11) - [¢<(l-X)Y2) - ¢<O)]
Y2

- m~o(_l)m {(h 3 -hoh[yD [~[l [¢<[(2m+2)I-x]y[ )-¢<[(2m+3)I-x]y])

F[
- ¢«2m+ I)ly[) +¢«2m+ 2)ly,)] + - [¢«2ml+x)YI) - ¢([(2m+ I)l+x]y])

YI

-¢«2m+ I)ly[ )+¢«2m+2)IY,)]

F2
- ¢«2m+ I)IY2) +¢«2m+2)IY2)] + - [¢«2ml+x)Y2) -¢«(2m+ I)I+x)Y2)

h

-¢«2m+ I)IY2)+¢«2m+2)lh) ]}-fao(X-I) (37)

and

where erfc(x) denotes the complementary error function of argument x (Abramowitz and
Stegun, 1965). Yj, )12' £j, £2, Fj, F2, and hi' i = 0, ... ,3 are defined in Appendix A.

FINITE ELEMENT FORMULAnON

The coupled non-linear response described by eqns (4), (11), (23) and (24) can only
be solved numerically, for example, using the finite element method. This section presents
a mixed finite element formulation of the new thermoporoelastic model. In the absence of
body forces, the equilibrium eqn (4) can be replaced by the following equation of virtual
work

(38)

where u, 8, (J and t denote displacement, strain, stress, and surface traction vectors.
The Galerkin method (Zienkiewicz, 1977) is introduced to obtain finite element rep­

resentations of the eqns (11), (23) and (24) that include first order time derivatives. In this
mixed formulation, displacements, pore water pressure, temperature and porosity are
interpolated as,

u(t) = NuD(t); pet) = NpP(t); T(t) = NTT(t); net) = Nno(t); (39)

where D(t), P(t), T(l) and fi(t) are vectors of nodal displacements, pore water pressure,
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temperature and porosity at time t; N u, Np , NT and Nn are matrices of shape functions for
displacement, pore water pressure, temperature and porosity, respectively.

Equations (11) and (23) can be reformulated by introducing eqn (24) in order to
eliminate the mixed derivatives of displacements on their left-hand side. By using eqn (24),
the water continuity eqn (11) is rewritten as

n ap aT an
f3w at -nawiii + at = V(kVp+S,/vT) (40)

In view of eqns (24) and (40), the heat energy balance eqn (23) can be then rewritten
as

ap aT ~ an .
(I at +(2 iii +~3 at = (Jew -}·sYVTVn

+(4VTVP+(SCVp)2 +(6(VT)2 +AV2 T+ V(S~Vp) (41)

where (; (i = 1, ... ,6) are defined in Appendix B.
Equations (38), (40), (41) and (24) are used as the governing equations in the finite

element formulation. (Note that they are fully analogous to eqns (4), (11), (23) and
(24).) A quadratic shape function is chosen in the current finite element analysis with
N u = Np = NT = N n = N. The substitution of eqn (39) into eqn (1) and (3) results in

I: = BU(t) (42)

(43)

where B is strain shape function matrix and D is the constitutive matrix.
The substitution of eqn (39), (42) and (43) into eqn (38), and the application of

Galerkin method to eqns (40), (41) and (24) with N as the weight function results in

GX+KX = F (44)

The coefficient matrices G and K are given in the Appendix B, and depend on the
nodal unknowns. There are numerous methods for solving this kind of non-linear equation.
In the present study, a backward difference time-stepping scheme is adopted. This offers
the following advantages (Lewis and Schrefler, 1987): (1) it can solve for the time t,+ I, by
evaluating the coefficient matrices at time t i thus avoiding an iterative solution procedure;
(2) it is found to reduce oscillations that appear in solving thermal problems with convective
boundary conditions. The following manipulation (Noorishad et aI., 1984) is used to obtain
a fully implicit one-step direct solution of the eqn (44) :

VTVp = ~VTSPi+l +~VPSTi+1

nVT= ~nSTi+1 +~VTini+l (45)

where i refers to the time level t i .

Considering a time interval of !1t, the eqn (44) can be rewritten in the following
incremental form

(46)

The subscript i refers to the time instant t" while .!1t( = ti+ L - tJ refers to the time step and
~X = X,+ I - K refers to the incremental nodal variable vector. Equation (46) can be solved
by starting from the initial solution with appropriate boundary conditions to obtain the
nodal variables corresponding to various time instances. A constant ~t has been used in
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the present study. Zienkiewicz (1977) and Lewis and Schreffer (1987) present details of the
solution of time-dependent finite element equations including the stability of the time­
stepping schemes.

NUMERICAL RESULTS

A computer code based on the above formulation has been developed. At every time
step in the transient analysis, the porosity, thermal conductivity and volumetric specific
heat are updated using eqns (24), (14) and (19). The density of water and soil grains are
updated using the following relations

(47)

(48)

where Pwo and Pso are initial values of water and soil grain density, respectively. The eqn
(48) is obtained by using eqns (6) and (1).

The permeability of soil is updated by using the following relationship (Carman, 1937)

~ = (~)3 (~)2 (flO)
k o no l-n fl (49)

where fl is the kinematic viscosity of water, ko is the initial value of permeability, flo is the
initial value of kinematic viscosity of water, and no is the initial porosity. The kinematic
viscosity (fl) which is a function of temperature is linearly interpolated from properties
given by Chapman (1967).

A selected set of numerical results is presented in this section to demonstrate the
significance of the thermodynamically coupled transport processes and the essential features
of the coupled non-linear response computed using the finite element analysis. Two sets of
material properties (material A and material B) are used in the analysis. The material
properties given below are the same for both materials

aw = 3.0 x 1O-4cC- 1
, as = 3.0 x 1O- 6 °C- 1

,

~ = 3.0x 1O- 6 °C- 1
, To = 300K

Cs = 0.937 (kJ/kg;aC), Cw = 4.186 (kJ/kg;aC),

PwO = 1000 kg/m 3
, PsO = 2610 kg/m 3

,

f3w = 3.3 GPa, K s = 59 GPa

}.s = 3.29 J/(s' m ,0C), Aw = 0.582 J/(s' m ,0C)

In addition for material A,

Sw = 6.0 X 10- 11 m2 /(s°C) ko = 1.0 X 10- 14 m5 /(Js)

E = 5.0 MPa, v = 0.2, no = 0.25

and for material B,

Sw = 2.70 X 10- 10 m2 /(s°C) ko = 5.0 X 10- 14 m5 /(1s) (Carnahan, 1984)

E = 2.880 MPa, v = 0.2, no = 0.375
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Figure 1 shows the response of a thermodynamically coupled soil column (material
A) of 5 m length with fully drained ends subjected to sudden heating at the top end
(T = 50°C at x = 0 and T = O°C at x = 5 m) at seven different time instants. The column
is fixed at the bottom end and stress free at the top end. The initial conditions are given by
eqn (34). The properties of the column are constant and the response is computed by using
eqns (35)-(37). Figure 2 shows the response of an identical column in the absence of
thermodynamically coupled heat-water flow (Sw = 0). Comparison of Figs 1and 2 indicates
that substantial pore water pressure is developed in the column due to thermodynamically
coupled heat-mass transfer. For example, the maximum pore water pressure in Fig. I is
approximately 25 kPa when compared to 15 kPa in Fig. 2. The general shapes of the pore
water pressure isochrones are identical for both cases. Pore water pressure is initially
generated near the heated end and propagates along the column as time progresses. The
time for complete dissipation of pore water pressure is more than 50,000 h.

The isochrones of temperature change shown in Figs 1 and 2 are identical. This means
that the thermo-osmosis and thermal-filtration have negligible influence on the temperature
distribution in the column. Temperatures reach their steady-state linear distribution well
ahead of the complete pore water pressure dissipation. Thus, as is found in laboratory and
field scale experiments, temperature fields are much easier to measure and calculate than
displacement or pore water pressure fields (Graham et a!., 1996). However, the isochrones
for displacements shown in Figs 1 and 2 show substantial differences. In both cases the
column expands longitudinally for some time after first heating and then starts to shrink.
This is because the water and soil skeleton expand initially due to heating causing local
increases in pore water pressure. With time, water drains out from the ends, the excess pore
water pressures decrease, and the decreases in water content result in a reduction in the
expansion. The steady-state displacement distribution of the column in this example is
linear, with maximum displacement at the heated end at all times. The peak displacements
are about 7 mm in the thermodynamically uncoupled case (Fig. 2) and about 12.6 mm for
the thermodynamically coupled case (Fig. I). The peak displacement for the ther­
modynamically uncoupled case (Sw = 0) is smaller than the coupled case at all times,
although the steady-state value is identical for both cases.

Figure 3 shows the response of a 5 m long soil column of material B subjected to the
same boundary and initial conditions as in Figs I and 2. Material B has higher values of
Sw and ko. It is softer and less dense than material A. The coupled analytical solution [eqns
(35)-(37)] for pore water pressure and displacement in Fig. 3 are substantially different
from that in Figs 1 and 2. Pore water pressures are higher in Fig. 3 but also dissipate more
rapidly (note the higher Sw, ko and no for material B). The temperature isochrones in Fig.
3 are relatively closer to those in Figs 1 and 2. This implies only a minor dependence of
temperature on parameters Sw and ko. The displacements in Fig. 3 are relatively larger than
those in Figs 1 and 2. The reason for this is that material B contains more water than
material A and therefore expands more under heating. The steady-state solution is identical
to that in Figs 1 and 2. Figure 3 also shows a comparison of the analytical solution with
the finite element solution. The agreement is excellent and the finite element solution
remains stable with increasing time. The porosity and other soil parameters are kept
constant in the finite element analysis to be consistent with the analytical solutions.

Figure 4 shows the finite element solution for the same soil column but now taking
account of changes of soil properties as given by eqns (14), (19), (25), (47), (48) and (49).
This set of solutions corresponds to the new non-linear governing equations developed in
this study. Solutions were computed for I1t = 0.5, 1.0 and 2.0 h to check the convergence
and stability of the finite element solutions. Negligible differences were found between
solutions corresponding to different I1t values. Comparison of Figs 3 and 4 indicates that
both pore water pressure and displacement from the non-linear coupled model are lower
than the linear coupled model. For example, the peak pore water pressure and displacement
of the non-linear model are 25 kPa and 22 mm, respectively, compared to corresponding
values of 35 kPa and 33 mm from the linear model. There are small differences between the
temperature distributions calculated using the linear and non-linear models in this problem.
Steady-state of basic variables is reached faster in the non-linear model. This is primarily



Fig. I. Coupled analytical solution of a heated soil column with constant properties (material A).
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due to increases in permeability arising from decreases of dynamic viscosity produced by
heating. The increase in permeability also causes water to flow out relatively earlier from
the ends thus reducing the peak value of the displacements.
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Figure 5 shows the thermodynamically uncoupled (Sw = 0) linear response obtained
from eqn (35)-(37) for the same problem. The uncoupled linear model significantly under­
estimates pore water pressures and displacements. As we have shown before, the tem­
perature distribution is largely independent of the assumptions used in the analysis. The
results shown in Figs 1-5 confirm the significance of the thermo-osmosis in ther­
moporoelastic analysis. The influence of the thermal-filtration appears to be relatively less
and possibly negligible. However, further work is needed to study the effect under a wider
range of boundary and initial conditions in which these effects may significantly influence
the response. It should also be noted that in all example problems the phenomenological
coefficient S" is assumed to be constant due to the availability oflimited experimental data.
This may not be true for semi-impermeable clay barriers and the consideration of its
variations may significantly influence the coupled response.

The final set of results corresponds to the non-linear response of a thick-wall soil
cylinder under plane-strain conditions. The inner radius of the cylinder is 0.5 m and the
outer radius is 10.5 m. Both surfaces are freely drained. The outer surface is fixed and does
not experience a change in temperature. The inner radius is stress free and the temperature
is increased by 50cC. This condition idealizes a container of nuclear fuel waste embedded
in an extensive thick clay deposit with the properties of material B. Figure 6 shows the pore
water pressure, temperature and radial displacement of the cylinder. A moving pore water
pressure front is noted with a constant pore water pressure region at early times (t = 2 h,
and 200 h). The constant pore water pressure region vanishes with increasing time. The
peak pore water pressure is developed inside the cylinder nearly 2000 h after the start of
heating. The temperature distribution is qualitatively similar to that in a soil column shown
earlier except that the steady-state distribution is a logarithmic function of the radius. The
displacement isochrones are relatively complicated. The displacement remains inward near
the inner wall of the soil cylinder but primarily outward over a larger region. The peak
displacement is not observed at the inner surface but inside the cylinder. The inward radial
displacement increases with time initially at the inner wall and then decreases. This is a
result of the initial expansion of the soil skeleton and water due to heating which causes an
increase in pore water pressure. Consequently water drains out causing a reduction in the
expansion.

Figure 7 shows the non-linear response of an identical soil cylinder with a constant
water pressure of 20 kPa applied to the inner surface in addition to the heating. The
boundary conditions at the outer surface are unchanged. The temperature isochrones are
almost identical to that in Fig. 6. This implies that the applied pore water pressure gradient
has a negligible influence on temperature profiles. However the magnitude of pore water
pressure and radial displacement are substantially different from the previous case. A region
of constant pore water pressure is noted as in the case of Fig. 6 and the maximum pore
water pressure is generated inside the cylinder. Steady-state pore water pressure is reached
after 50,000 h. Steady-state pore water pressure distribution is not logarithmic due to the
presence thermodynamic coupling. The displacement isochrones are similar to those in Fig.
6 but the magnitude is large. The steady-state displacement is substantially larger than the
previous case due to the applied pore water pressure. It takes nearly 6000 h since the heating
to reach the maximum displacement of the cylinder. Maximum values of displacement and
pore water pressure are not observed at the same point nor do they occur at the same time
instants. The numerical results presented in Figs 1-7 confirm the complex coupling effects
in a saturated medium under hydro-thermo-mechanical loading. Additional parametric
studies on coupled fields are presented elsewhere (Zhou, 1998).

CONCLUSIONS

A coupled thermoporoelastic model accounting for thermodynamically coupled heat­
water flow, compressibility and thermal expansion of constituents, changing material
properties and convective heat flow is presented. The governing equations of the model are
non-linear. It can be reduced to some linear models reported in literature. An explicit
analytical solution can be derived for the linear response of a one-dimensional soil column
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subjected to heating and pressure at one end. The mixed finite element formulation of the
non-linear model results in stable solutions over a longer time span. Numerical solutions
indicate that the temperature distribution is insignificantly changed due to the presence of
thermodynamically coupled heat-water flow and porosity dependent material properties.
Substantial differences in pore water pressure and displacements are noted between ther­
modynamically coupled and uncoupled models. The response predicted by the non-linear
model also differs significantly from the linear model. Coupled non-linear fields in cylindrical
domain indicate that the inner region of the cylinder experiences the largest displacements
and pore water pressures. A complementary experimental program to determine the consti­
tutive properties involved in the present model is essential for realistic modelling of practical
problems. The development of a related continuum model for unsaturated media will be
reported in the future (Zhou, 1998).
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APPENDIX A

Applying Laplace transforms to eqns (30)-(32) results in,

I-v 13 2 82 82

--2G-8-~-p-Ka-t= 0
l-2v ox2 ' ox" ox2

(Al)

(A2)

(A3)

where s is the Laplace transform variable, and an overbar (-) is hereafter used to identify the Laplace transform
of a variable.

From eqn (A2),

(A4)

Substitution of eqn (A4) into eqn (A3) results in

where

ToKac]
il 4 =~~­c,

Integration of eqn (A 1) results in the following general solution

(AS)

(A6)

(A7)

where d, and d2 are unknown constants to be determined by boundary conditions and the equilibrium equation
expressed in terms of stresses.

Substitution of eqn (A4) in eqn (A7) yields



4682

where
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(1- v)2GS. b, = (1- v)2Gkb, = .
(1- 2v)c, ' (1- 2v)c I

b
(l-v)2Gc, '. (l-v)2Gc,

, = -Krx b4 = - -~
(l-2v)c, ' (1-2v)c,

(A8)

(A9)

Elimination of (a'jax')T from eqn (A8) by using eqn (A5) results in

_ hi a'
T = --p+h,p+h,(d,x+d,)

sax'

where

(A10)

hi = _ a,b, -b,a,.
alb, -alb, '

(All)

Substitution of eqn (A 10) into eqn (A5) results in,

where

The general solution of eqn (A 11) is

where

(AI2)

(AI3)

(AI4)

Substitution of eqn (AI4) into eqn (AIO) results in,

h
_ a,h,

0--
a,9,

(AI5)

It can be shown from eqn (A4), (AI4) and (AI6) that

where

(AI6)

(AI7)

The following solution for axial displacement of the column can be determined by using eqn (AI7).

(AI8a)

(AI8b)

(AI8c)

where d3 is an unknown constant to be determined by boundary conditions.
It can be shown by using the equilibrium equation that
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d, = 0 (A20)

The remaining six unknowns db d" A" A" B1 and B2 can be determined by using the six boundary conditions
given by eqn (33). Thereafter, the time-domain solution is obtained by performing inverse Laplace transform
analytically.

APPENDIX B

The coefficients" (i = I, ... ,6) in eqn (41) are defined as

The matrices G and K and vectors X and Fin eqn (44) can be expressed as

(A2l)

G=

X=

0 0 0 0

K~ rK~
K l2 K I3

~.j0 G 22 G 2J G24 K22 K23

0 GJ2 G JJ G J4 KJ2 KJ]

G 41 G42 G4J G44 0 0

OCt)

[ F,P(t) F2
(A22)F=

t(l) F,

fi(t) 0

where

G22 = In NT ;,. N dn, G 2J = - In NT na.N dn, G 24 = In NTN dn

GJ2 = In NT(INdn, GJ] = In N T(2 Ndn, G 34 = In NT(JNdn

G43 = In W [~ a-(I-n)a,]Ndn, G44 = - In WNdn

K 11 = In BTDBdn, K l2 = - In ¢BTmTNdn, KIJ = - In BTK'amTNdn

K22 = In VNTkVN dn, K2J = In VNTSwVN dn

KJ2 = - In W G(4VT+(SVP)VNdn+ In VWS:VNdn

KJ] = In VW~[2ic,+(icw-A,)n]VNdn- In wG(4VP+(6VT)VNdn

and ql;q and qT denote the specified water and heat (conductive) fluxes at the boundary S.

(A23)


